Cysteine induces longitudinal bone growth in mice by upregulating IGF-I.

نویسندگان

  • Phil-Dong Moon
  • Min-Ho Kim
  • Hyun-A Oh
  • Sun-Young Nam
  • Na-Ra Han
  • Hyun-Ja Jeong
  • Hyung-Min Kim
چکیده

Cysteine (Cys) is known to exert various effects, such as antioxidant, antipancreatitic and antidiabetic effects. However, the effects of Cys on longitudinal bone growth have not been elucidate to date. Thus, the aim of the present study was to evaluate the effects of Cys on bone growth. Growth-plate thickness and bone parameters, such as bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), connectivity density (Conn.D) and total porosity were analyzed by means of micro-computed tomography (μCT). The levels of serum insulin-like growth factor-I (IGF-I) were measured by enzyme-linked immunosorbent assay (ELISA). Hepatic IGF-I mRNA expression was analyzed by quantitative polymerase chain reaction (qPCR). The phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) was investigated by western blot analysis. Our results revealed that Cys increased IGF-I mRNA expression in HepG2 cells. The thickness of the growth plates was increased following treatment with Cys. Moreover, BV/TV, Tb.Th, TbN, Conn.D and total porosity were improved following treatment with Cys. Hepatic IGF-I mRNA expression and serum IGF-I levels were increased by Cys. The levels of phosphorylated JAK2 and STAT5 were elevated by Cys. The findings of our study indicate that Cys increases the thickness of growth plates through the upregulation of IGF-I, which results from the phosphorylation of JAK2-STAT5. Thus, our data suggest that Cys may have potential for use as a growth-promoting agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence supporting dual, IGF-I-independent and IGF-I-dependent, roles for GH in promoting longitudinal bone growth.

The possibility that growth hormone (GH) has effects on long bone growth independent of insulin-like growth factor-I (IGF-I) has long been debated. If this is true, then long bone growth should be more profoundly affected by the absence of GH (since both GH and GH-stimulated IGF-I effects are absent) than by the absence of IGF-I alone (since GH is still present and actually elevated). To test t...

متن کامل

Chronic upper airway resistive loading induces growth retardation via the GH/IGF-I axis in prepubescent rats.

The effect of upper airway loading on longitudinal bone growth and various components of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis has not been fully elucidated. In the present study, the effect of chronic resistive airway loading (CAL) in a prepubescent rat model on linear bone growth and weight gain was investigated. We hypothesize that CAL induced in prepubescent rats...

متن کامل

Astragalus Extract Mixture HT042 Increases Longitudinal Bone Growth Rate by Upregulating Circulatory IGF-1 in Rats

Astragalus extract mixture HT042 is a standardized ingredient of health functional food approved by Korean FDA with a claim of "height growth of children." HT042 stimulates bone growth rate and increases local IGF-1 expression in growth plate of rats which can be considered as direct stimulation of GH and its paracrine/autocrine actions. However, it remains unclear whether HT042 stimulates circ...

متن کامل

IGF and IGF-binding protein expression in the growth plate of normal, dexamethasone-treated and human IGF-II transgenic mice.

Glucocorticoid (GC) treatment in childhood can lead to suppression of longitudinal growth as a side effect. The actions of GCs are thought to be mediated in part by impaired action of the insulin-like growth factors (IGF-I and IGF-II) and their binding proteins (IGFBP-1 to -6). We have studied the effects of GCs on IGF and IGFBP expression at the local level of the growth plate, using non-radio...

متن کامل

Ubiquitin ligase Cbl-b downregulates bone formation through suppression of IGF-I signaling in osteoblasts during denervation.

UNLABELLED Unloading can prevent bone formation by osteoblasts. To study this mechanism, we focused on a ubiquitin ligase, Cbl-b, which was highly expressed in osteoblastic cells during denervation. Our results suggest that Cbl-b may mediate denervation-induced osteopenia by inhibiting IGF-I signaling in osteoblasts. INTRODUCTION Unloading, such as denervation (sciatic neurectomy) and spacefl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 36 2  شماره 

صفحات  -

تاریخ انتشار 2015